added feedforward control inputs force and torque
This commit is contained in:
@@ -63,6 +63,105 @@ class SE3Control(object):
|
||||
self.f_to_TM = np.vstack((np.ones((1,self.num_rotors)),np.hstack([np.cross(self.rotor_pos[key],np.array([0,0,1])).reshape(-1,1)[0:2] for key in self.rotor_pos]), np.array([k*(-1)**i for i in range(self.num_rotors)]).reshape(1,-1)))
|
||||
self.TM_to_f = np.linalg.inv(self.f_to_TM)
|
||||
|
||||
def update_ref(self, t, flat_output):
|
||||
"""
|
||||
This function receives the current time, and desired flat
|
||||
outputs. It returns the reference command inputs.
|
||||
Follows https://repository.upenn.edu/edissertations/547/
|
||||
|
||||
Inputs:
|
||||
t, present time in seconds
|
||||
flat_output, a dict describing the present desired flat outputs with keys
|
||||
x, position, m
|
||||
x_dot, velocity, m/s
|
||||
x_ddot, acceleration, m/s**2 a
|
||||
x_dddot, jerk, m/s**3 a_dot
|
||||
x_ddddot, snap, m/s**4 a_ddot
|
||||
yaw, yaw angle, rad
|
||||
yaw_dot, yaw rate, rad/s
|
||||
yaw_ddot, yaw acceleration, rad/s**2 #required! not the same if computing command using controller
|
||||
|
||||
Outputs:
|
||||
control_input, a dict describing the present computed control inputs with keys
|
||||
cmd_motor_speeds, rad/s
|
||||
cmd_thrust, N (for debugging and laboratory; not used by simulator)
|
||||
cmd_moment, N*m (for debugging; not used by simulator)
|
||||
cmd_q, quaternion [i,j,k,w] (for laboratory; not used by simulator)
|
||||
cmd_w, angular velocity
|
||||
cmd_a, angular acceleration
|
||||
"""
|
||||
cmd_motor_speeds = np.zeros((4,))
|
||||
cmd_q = np.zeros((4,))
|
||||
|
||||
def normalize(x):
|
||||
"""Return normalized vector."""
|
||||
return x / np.linalg.norm(x)
|
||||
|
||||
# def vee_map(S):
|
||||
# """Return vector corresponding to given skew symmetric matrix."""
|
||||
# return np.array([-S[1,2], S[0,2], -S[0,1]])
|
||||
|
||||
# Desired force vector.
|
||||
t = flat_output['x_ddot']+ np.array([0, 0, self.g])
|
||||
b3 = normalize(t)
|
||||
F_des = self.mass * (t)# this is vectorized
|
||||
|
||||
# Desired thrust is force projects onto b3 axis.
|
||||
# R = Rotation.from_quat(state['q']).as_matrix() #this is where most of the problem is, there is no error in rotation!
|
||||
# b3 = R @ np.array([0, 0, 1])
|
||||
u1 = np.dot(F_des, b3)
|
||||
|
||||
# Desired orientation to obtain force vector.
|
||||
b3_des = normalize(F_des) #b3_des and b3 are the same
|
||||
yaw_des = flat_output['yaw']
|
||||
c1_des = np.array([np.cos(yaw_des), np.sin(yaw_des), 0])
|
||||
b2_des = normalize(np.cross(b3_des, c1_des))
|
||||
b1_des = np.cross(b2_des, b3_des)
|
||||
R_des = np.stack([b1_des, b2_des, b3_des]).T
|
||||
|
||||
R = R_des# assume we have perfect tracking on rotation
|
||||
# Orientation error.
|
||||
# S_err = 0.5 * (R_des.T @ R - R.T @ R_des)
|
||||
# att_err = vee_map(S_err)
|
||||
|
||||
# Following section follows Mellinger paper to compute reference angular velocity
|
||||
dot_u1 = np.dot(b3,flat_output['x_dddot'])
|
||||
hw = self.mass/u1*(flat_output['x_dddot']-dot_u1*b3)
|
||||
p = np.dot(-hw, b2_des)
|
||||
q = np.dot(hw, b1_des)
|
||||
w_des = np.array([0, 0, flat_output['yaw_dot']])
|
||||
r = np.dot(w_des, b3_des)
|
||||
Omega = np.array([p, q, r])
|
||||
|
||||
wwu1b3 = np.cross(Omega, np.cross(Omega, u1*b3))
|
||||
ddot_u1 = np.dot(b3, self.mass*flat_output['x_ddddot']) - np.dot(b3, wwu1b3)
|
||||
ha = 1.0/u1*(self.mass*flat_output['x_ddddot'] - ddot_u1*b3 - 2*np.cross(Omega,dot_u1*b3) - wwu1b3)
|
||||
p_dot = np.dot(-ha, b2_des)
|
||||
q_dot = np.dot(ha, b1_des)
|
||||
np.cross(Omega, Omega)
|
||||
r_dot = flat_output['yaw_ddot'] *np.dot(np.array([0,0,1.0]), b3_des) #uniquely need yaw_ddot
|
||||
Alpha = np.array([p_dot, q_dot, r_dot])
|
||||
|
||||
|
||||
|
||||
u2 = self.inertia @ Alpha + np.cross(Omega, self.inertia @ Omega)
|
||||
# print(u1,u2)
|
||||
TM = np.array([u1, u2[0], u2[1], u2[2]])
|
||||
cmd_motor_forces = self.TM_to_f @ TM
|
||||
cmd_motor_speeds = cmd_motor_forces / self.k_eta
|
||||
cmd_motor_speeds = np.sign(cmd_motor_speeds) * np.sqrt(np.abs(cmd_motor_speeds))
|
||||
|
||||
cmd_q = Rotation.from_matrix(R_des).as_quat()
|
||||
|
||||
|
||||
control_input = {'cmd_motor_speeds':cmd_motor_speeds,
|
||||
'cmd_thrust':u1,
|
||||
'cmd_moment':u2,
|
||||
'cmd_q':cmd_q,
|
||||
'cmd_w':Omega,
|
||||
'cmd_a':Alpha}
|
||||
return control_input
|
||||
|
||||
def update(self, t, state, flat_output):
|
||||
"""
|
||||
This function receives the current time, true state, and desired flat
|
||||
|
||||
@@ -98,6 +98,7 @@ def simulate(world, initial_state, vehicle, controller, trajectory, wind_profile
|
||||
control = [sanitize_control_dic(controller.update(time[-1], mocap_measurements[-1], flat[-1]))]
|
||||
else:
|
||||
control = [sanitize_control_dic(controller.update(time[-1], state[-1], flat[-1]))]
|
||||
control_ref = [sanitize_control_dic(controller.update_ref(time[-1], flat[-1]))]
|
||||
state_dot = vehicle.statedot(state[0], control[0]['cmd_motor_speeds'], t_step)
|
||||
imu_measurements.append(imu.measurement(state[-1], state_dot, with_noise=True))
|
||||
imu_gt.append(imu.measurement(state[-1], state_dot, with_noise=False))
|
||||
|
||||
@@ -113,12 +113,15 @@ class CircularTraj(object):
|
||||
if self.yaw_bool:
|
||||
yaw = np.pi/4*np.sin(np.pi*t)
|
||||
yaw_dot = np.pi*np.pi/4*np.cos(np.pi*t)
|
||||
yaw_ddot = -np.pi*np.pi*np.pi/4*np.sin(np.pi*t)
|
||||
|
||||
else:
|
||||
yaw = 0
|
||||
yaw_dot = 0
|
||||
yaw_ddot = 0
|
||||
|
||||
flat_output = { 'x':x, 'x_dot':x_dot, 'x_ddot':x_ddot, 'x_dddot':x_dddot, 'x_ddddot':x_ddddot,
|
||||
'yaw':yaw, 'yaw_dot':yaw_dot}
|
||||
'yaw':yaw, 'yaw_dot':yaw_dot, 'yaw_ddot':yaw_ddot}
|
||||
return flat_output
|
||||
|
||||
class ThreeDCircularTraj(object):
|
||||
|
||||
Reference in New Issue
Block a user