Files
rotor_py_control/rotorpy/trajectories/circular_traj.py
spencerfolk 4d7fca10e4 Init
2023-03-15 15:38:14 -04:00

189 lines
8.9 KiB
Python

import numpy as np
import sys
class CircularTraj(object):
"""
A circle.
"""
def __init__(self, center=np.array([0,0,0]), radius=1, freq=0.2, yaw_bool=False, plane='XY', direction='CCW'):
"""
This is the constructor for the Trajectory object. A fresh trajectory
object will be constructed before each mission.
Inputs:
center, the center of the circle (m)
radius, the radius of the circle (m)
freq, the frequency with which a circle is completed (Hz)
yaw_bool, determines if yaw motion is desired
plane, the plane with which the circle lies on, 'XY', 'YZ', or 'XZ'
direcition, the direction of the circle, 'CCW' or 'CW'
"""
# Check and assign inputs
if plane == "XY" or plane == "YZ" or plane == "XZ":
self.plane = plane
else:
print("CircularTraj Error: incorrect specification of plane. Must be 'XY', 'YZ', or 'XZ' ")
sys.exit(1)
if direction == "CW" or direction == "CCW":
if direction == "CW":
self.sign = -1
else:
self.sign = 1
else:
print("CircularTraj Error: incorrect specification of direction. Must be 'CW' or 'CCW' ")
sys.exit(1)
self.center = center
self.cx, self.cy, self.cz = center[0], center[1], center[2]
self.radius = radius
self.freq = freq
self.omega = 2*np.pi*self.freq
self.yaw_bool = yaw_bool
def update(self, t):
"""
Given the present time, return the desired flat output and derivatives.
Inputs
t, time, s
Outputs
flat_output, a dict describing the present desired flat outputs with keys
x, position, m
x_dot, velocity, m/s
x_ddot, acceleration, m/s**2
x_dddot, jerk, m/s**3
x_ddddot, snap, m/s**4
yaw, yaw angle, rad
yaw_dot, yaw rate, rad/s
"""
if self.plane == "XY":
x = np.array([self.cx + self.radius*np.cos(self.sign*self.omega*t),
self.cy + self.radius*np.sin(self.sign*self.omega*t),
self.cz])
x_dot = np.array([-self.radius*self.sign*self.omega*np.sin(self.sign*self.omega*t),
self.radius*self.sign*self.omega*np.cos(self.sign*self.omega*t),
0])
x_ddot = np.array([-self.radius*((self.sign*self.omega)**2)*np.cos(self.sign*self.omega*t),
-self.radius*((self.sign*self.omega)**2)*np.sin(self.sign*self.omega*t),
0])
x_dddot = np.array([self.radius*((self.sign*self.omega)**3)*np.sin(self.sign*self.omega*t),
-self.radius*((self.sign*self.omega)**3)*np.cos(self.sign*self.omega*t),
0])
x_ddddot = np.array([self.radius*((self.sign*self.omega)**4)*np.cos(self.sign*self.omega*t),
self.radius*((self.sign*self.omega)**4)*np.sin(self.sign*self.omega*t),
0])
elif self.plane == "YZ":
x = np.array([self.cx,
self.cy + self.radius*np.cos(self.sign*self.omega*t),
self.cz + self.radius*np.sin(self.sign*self.omega*t)])
x_dot = np.array([0,
-self.radius*self.sign*self.omega*np.sin(self.sign*self.omega*t),
self.radius*self.sign*self.omega*np.cos(self.sign*self.omega*t)])
x_ddot = np.array([0,
-self.radius*((self.sign*self.omega)**2)*np.cos(self.sign*self.omega*t),
-self.radius*((self.sign*self.omega)**2)*np.sin(self.sign*self.omega*t)])
x_dddot = np.array([0,
self.radius*((self.sign*self.omega)**3)*np.sin(self.sign*self.omega*t),
-self.radius*((self.sign*self.omega)**3)*np.cos(self.sign*self.omega*t)])
x_ddddot = np.array([0,
self.radius*((self.sign*self.omega)**4)*np.cos(self.sign*self.omega*t),
self.radius*((self.sign*self.omega)**4)*np.sin(self.sign*self.omega*t)])
elif self.plane == "XZ":
x = np.array([self.cx + self.radius*np.cos(self.sign*self.omega*t),
self.cy,
self.cz + self.radius*np.sin(self.sign*self.omega*t)])
x_dot = np.array([-self.radius*self.sign*self.omega*np.sin(self.sign*self.omega*t),
0,
self.radius*self.sign*self.omega*np.cos(self.sign*self.omega*t)])
x_ddot = np.array([-self.radius*((self.sign*self.omega)**2)*np.cos(self.sign*self.omega*t),
0,
-self.radius*((self.sign*self.omega)**2)*np.sin(self.sign*self.omega*t)])
x_dddot = np.array([self.radius*((self.sign*self.omega)**3)*np.sin(self.omega*t),
0,
-self.radius*((self.sign*self.omega)**3)*np.cos(self.sign*self.omega*t)])
x_ddddot = np.array([self.radius*((self.sign*self.omega)**4)*np.cos(self.sign*self.omega*t),
0,
self.radius*((self.sign*self.omega)**4)*np.sin(self.sign*self.omega*t)])
if self.yaw_bool:
yaw = np.pi/4*np.sin(np.pi*t)
yaw_dot = np.pi*np.pi/4*np.cos(np.pi*t)
else:
yaw = 0
yaw_dot = 0
flat_output = { 'x':x, 'x_dot':x_dot, 'x_ddot':x_ddot, 'x_dddot':x_dddot, 'x_ddddot':x_ddddot,
'yaw':yaw, 'yaw_dot':yaw_dot}
return flat_output
class ThreeDCircularTraj(object):
"""
"""
def __init__(self, center=np.array([0,0,0]), radius=np.array([1,1,1]), freq=np.array([0.2,0.2,0.2]), yaw_bool=False):
"""
This is the constructor for the Trajectory object. A fresh trajectory
object will be constructed before each mission.
Inputs:
center, the center of the circle (m)
radius, the radius of the circle (m)
freq, the frequency with which a circle is completed (Hz)
"""
self.center = center
self.cx, self.cy, self.cz = center[0], center[1], center[2]
self.radius = radius
self.freq = freq
self.omega = 2*np.pi*self.freq
self.yaw_bool = yaw_bool
def update(self, t):
"""
Given the present time, return the desired flat output and derivatives.
Inputs
t, time, s
Outputs
flat_output, a dict describing the present desired flat outputs with keys
x, position, m
x_dot, velocity, m/s
x_ddot, acceleration, m/s**2
x_dddot, jerk, m/s**3
x_ddddot, snap, m/s**4
yaw, yaw angle, rad
yaw_dot, yaw rate, rad/s
"""
x = np.array([self.cx + self.radius[0]*np.cos(self.omega[0]*t),
self.cy + self.radius[1]*np.sin(self.omega[1]*t),
self.cz + self.radius[2]*np.sin(self.omega[2]*t)])
x_dot = np.array([-self.radius[0]*self.omega[0]*np.sin(self.omega[0]*t),
self.radius[1]*self.omega[1]*np.cos(self.omega[1]*t),
self.radius[2]*self.omega[2]*np.cos(self.omega[2]*t)])
x_ddot = np.array([-self.radius[0]*(self.omega[0]**2)*np.cos(self.omega[0]*t),
-self.radius[1]*(self.omega[1]**2)*np.sin(self.omega[1]*t),
-self.radius[2]*(self.omega[2]**2)*np.sin(self.omega[2]*t)])
x_dddot = np.array([ self.radius[0]*(self.omega[0]**3)*np.sin(self.omega[0]*t),
-self.radius[1]*(self.omega[1]**3)*np.cos(self.omega[1]*t),
self.radius[2]*(self.omega[2]**3)*np.cos(self.omega[2]*t)])
x_ddddot = np.array([self.radius[0]*(self.omega[0]**4)*np.cos(self.omega[0]*t),
self.radius[1]*(self.omega[1]**4)*np.sin(self.omega[1]*t),
self.radius[2]*(self.omega[2]**4)*np.sin(self.omega[2]*t)])
if self.yaw_bool:
yaw = 0.8*np.pi/2*np.sin(2.5*t)
yaw_dot = 0.8*2.5*np.pi/2*np.cos(2.5*t)
else:
yaw = 0
yaw_dot = 0
flat_output = { 'x':x, 'x_dot':x_dot, 'x_ddot':x_ddot, 'x_dddot':x_dddot, 'x_ddddot':x_ddddot,
'yaw':yaw, 'yaw_dot':yaw_dot}
return flat_output