Files
rotor_py_control/rotorpy/controllers/quadrotor_control.py
spencerfolk 4d7fca10e4 Init
2023-03-15 15:38:14 -04:00

153 lines
6.3 KiB
Python

import numpy as np
from scipy.spatial.transform import Rotation
class SE3Control(object):
"""
"""
def __init__(self, quad_params):
"""
Parameters:
quad_params, dict with keys specified in rotorpy/vehicles
"""
# Quadrotor physical parameters.
# Inertial parameters
self.mass = quad_params['mass'] # kg
self.Ixx = quad_params['Ixx'] # kg*m^2
self.Iyy = quad_params['Iyy'] # kg*m^2
self.Izz = quad_params['Izz'] # kg*m^2
self.Ixy = quad_params['Ixy'] # kg*m^2
self.Ixz = quad_params['Ixz'] # kg*m^2
self.Iyz = quad_params['Iyz'] # kg*m^2
# Frame parameters
self.c_Dx = quad_params['c_Dx'] # drag coeff, N/(m/s)**2
self.c_Dy = quad_params['c_Dy'] # drag coeff, N/(m/s)**2
self.c_Dz = quad_params['c_Dz'] # drag coeff, N/(m/s)**2
self.num_rotors = quad_params['num_rotors']
self.rotor_pos = quad_params['rotor_pos']
# Rotor parameters
self.rotor_speed_min = quad_params['rotor_speed_min'] # rad/s
self.rotor_speed_max = quad_params['rotor_speed_max'] # rad/s
self.k_eta = quad_params['k_eta'] # thrust coeff, N/(rad/s)**2
self.k_m = quad_params['k_m'] # yaw moment coeff, Nm/(rad/s)**2
self.k_d = quad_params['k_d'] # rotor drag coeff, N/(m/s)
self.k_z = quad_params['k_z'] # induced inflow coeff N/(m/s)
self.k_flap = quad_params['k_flap'] # Flapping moment coefficient Nm/(m/s)
# Motor parameters
self.tau_m = quad_params['tau_m'] # motor reponse time, seconds
# You may define any additional constants you like including control gains.
self.inertia = np.array([[self.Ixx, self.Ixy, self.Ixz],
[self.Ixy, self.Iyy, self.Iyz],
[self.Ixz, self.Iyz, self.Izz]]) # kg*m^2
self.g = 9.81 # m/s^2
# Gains
self.kp_pos = np.array([6.5,6.5,15])
self.kd_pos = np.array([4.0, 4.0, 9])
self.kp_att = 544
self.kd_att = 46.64
# Linear map from individual rotor forces to scalar thrust and vector
# moment applied to the vehicle.
k = self.k_m/self.k_eta
# Below is an automated generation of the control allocator matrix. It assumes that all thrust vectors are aligned
# with the z axis and that the "sign" of each rotor yaw moment alternates starting with positive for r1.
self.f_to_TM = np.vstack((np.ones((1,self.num_rotors)),np.hstack([np.cross(self.rotor_pos[key],np.array([0,0,1])).reshape(-1,1)[0:2] for key in self.rotor_pos]), np.array([k*(-1)**i for i in range(self.num_rotors)]).reshape(1,-1)))
self.TM_to_f = np.linalg.inv(self.f_to_TM)
def update(self, t, state, flat_output):
"""
This function receives the current time, true state, and desired flat
outputs. It returns the command inputs.
Inputs:
t, present time in seconds
state, a dict describing the present state with keys
x, position, m
v, linear velocity, m/s
q, quaternion [i,j,k,w]
w, angular velocity, rad/s
flat_output, a dict describing the present desired flat outputs with keys
x, position, m
x_dot, velocity, m/s
x_ddot, acceleration, m/s**2
x_dddot, jerk, m/s**3
x_ddddot, snap, m/s**4
yaw, yaw angle, rad
yaw_dot, yaw rate, rad/s
Outputs:
control_input, a dict describing the present computed control inputs with keys
cmd_motor_speeds, rad/s
cmd_thrust, N
cmd_moment, N*m
cmd_q, quaternion [i,j,k,w]
"""
cmd_motor_speeds = np.zeros((4,))
cmd_thrust = 0
cmd_moment = np.zeros((3,))
cmd_q = np.zeros((4,))
def normalize(x):
"""Return normalized vector."""
return x / np.linalg.norm(x)
def vee_map(S):
"""Return vector corresponding to given skew symmetric matrix."""
return np.array([-S[1,2], S[0,2], -S[0,1]])
# Desired force vector.
pos_err = state['x'] - flat_output['x']
dpos_err = state['v'] - flat_output['x_dot']
F_des = self.mass * (- self.kp_pos*pos_err
- self.kd_pos*dpos_err
+ flat_output['x_ddot']
+ np.array([0, 0, self.g]))
# Desired thrust is force projects onto b3 axis.
R = Rotation.from_quat(state['q']).as_matrix()
b3 = R @ np.array([0, 0, 1])
u1 = np.dot(F_des, b3)
# Desired orientation to obtain force vector.
b3_des = normalize(F_des)
yaw_des = flat_output['yaw']
c1_des = np.array([np.cos(yaw_des), np.sin(yaw_des), 0])
b2_des = normalize(np.cross(b3_des, c1_des))
b1_des = np.cross(b2_des, b3_des)
R_des = np.stack([b1_des, b2_des, b3_des]).T
# Orientation error.
S_err = 0.5 * (R_des.T @ R - R.T @ R_des)
att_err = vee_map(S_err)
# Angular velocity error (this is oversimplified).
w_des = np.array([0, 0, flat_output['yaw_dot']])
w_err = state['w'] - w_des
# Angular control; vector units of N*m.
u2 = self.inertia @ (-self.kp_att*att_err - self.kd_att*w_err)
# Compute motor speeds. Avoid taking square root of negative numbers.
TM = np.array([u1, u2[0], u2[1], u2[2]])
cmd_motor_forces = self.TM_to_f @ TM
cmd_motor_speeds = cmd_motor_forces / self.k_eta
cmd_motor_speeds = np.sign(cmd_motor_speeds) * np.sqrt(np.abs(cmd_motor_speeds))
cmd_thrust = u1
cmd_moment = u2
cmd_q = Rotation.from_matrix(R_des).as_quat()
control_input = {'cmd_motor_speeds':cmd_motor_speeds,
'cmd_thrust':cmd_thrust,
'cmd_moment':cmd_moment,
'cmd_q':cmd_q}
return control_input