Files
rotor_py_control/rotorpy/trajectories/lissajous_traj.py

82 lines
3.2 KiB
Python

import numpy as np
"""
Lissajous curves are defined by trigonometric functions parameterized in time.
See https://en.wikipedia.org/wiki/Lissajous_curve
"""
class TwoDLissajous(object):
"""
The standard Lissajous on the XY curve as defined by https://en.wikipedia.org/wiki/Lissajous_curve
This is planar in the XY plane at a fixed height.
"""
def __init__(self, A=1, B=1, a=1, b=1, delta=0, x_offset=0, y_offset=0, height=0, yaw_bool=False):
"""
This is the constructor for the Trajectory object. A fresh trajectory
object will be constructed before each mission.
Inputs:
A := amplitude on the X axis
B := amplitude on the Y axis
a := frequency on the X axis
b := frequency on the Y axis
delta := phase offset between the x and y parameterization
x_offset := the offset of the trajectory in the x axis
y_offset := the offset of the trajectory in the y axis
height := the z height that the lissajous occurs at
yaw_bool := determines whether the vehicle should yaw
"""
self.A, self.B = A, B
self.a, self.b = a, b
self.delta = delta
self.height = height
self.x_offset = x_offset
self.y_offset = y_offset
self.yaw_bool = yaw_bool
def update(self, t):
"""
Given the present time, return the desired flat output and derivatives.
Inputs
t, time, s
Outputs
flat_output, a dict describing the present desired flat outputs with keys
x, position, m
x_dot, velocity, m/s
x_ddot, acceleration, m/s**2
x_dddot, jerk, m/s**3
x_ddddot, snap, m/s**4
yaw, yaw angle, rad
yaw_dot, yaw rate, rad/s
"""
x = np.array([self.x_offset + self.A*np.sin(self.a*t + self.delta),
self.y_offset + self.B*np.sin(self.b*t),
self.height])
x_dot = np.array([self.a*self.A*np.cos(self.a*t + self.delta),
self.b*self.B*np.cos(self.b*t),
0])
x_ddot = np.array([-(self.a)**2*self.A*np.sin(self.a*t + self.delta),
-(self.b)**2*self.B*np.sin(self.b*t),
0])
x_dddot = np.array([-(self.a)**3*self.A*np.cos(self.a*t + self.delta),
-(self.b)**3*self.B*np.cos(self.b*t),
0])
x_ddddot = np.array([(self.a)**4*self.A*np.sin(self.a*t + self.delta),
(self.b)**4*self.B*np.sin(self.b*t),
0])
if self.yaw_bool:
yaw = np.pi/4*np.sin(np.pi*t)
yaw_dot = np.pi*np.pi/4*np.cos(np.pi*t)
yaw_ddot = np.pi*np.pi*np.pi/4*np.cos(np.pi*t)
else:
yaw = 0
yaw_dot = 0
yaw_ddot = 0
flat_output = { 'x':x, 'x_dot':x_dot, 'x_ddot':x_ddot, 'x_dddot':x_dddot, 'x_ddddot':x_ddddot,
'yaw':yaw, 'yaw_dot':yaw_dot, 'yaw_ddot':yaw_ddot}
return flat_output