import gymnasium as gym import numpy as np import matplotlib.pyplot as plt import os from rotorpy.vehicles.crazyflie_params import quad_params # Import quad params for the quadrotor environment. # Import the QuadrotorEnv gymnasium environment using the following command. from rotorpy.learning.quadrotor_environments import QuadrotorEnv # Reward functions can be specified by the user, or we can import from existing reward functions. from rotorpy.learning.quadrotor_reward_functions import hover_reward """ In this script, we evaluate the policy trained in ppo_hover_train.py. The task is for the quadrotor to stabilize to hover at the origin when starting at a random position nearby. """ # First we'll set up some directories for saving the policy and logs. models_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "rotorpy", "learning", "policies") log_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "rotorpy", "learning", "logs") output_dir = os.path.join(os.path.dirname(__file__), "..", "rotorpy", "data_out", "ppo_hover") if not os.path.exists(output_dir): os.makedirs(output_dir) # Next import Stable Baselines. try: import stable_baselines3 except: raise ImportError('To run this example you must have Stable Baselines installed via pip install stable_baselines3') from stable_baselines3 import PPO # We'll use PPO for training. from stable_baselines3.ppo.policies import MlpPolicy # The policy will be represented by an MLP num_cpu = 4 # for parallelization # Choose the weights for our reward function. Here we are creating a lambda function over hover_reward. reward_function = lambda obs, act: hover_reward(obs, act, weights={'x': 1, 'v': 0.1, 'w': 0, 'u': 1e-5}) # Make the environment. For this demo we'll train a policy in cmd_vel. Higher abstractions lead to easier tasks. env = gym.make("Quadrotor-v0", control_mode ='cmd_ctbr', reward_fn = reward_function, quad_params = quad_params, max_time = 5, world = None, sim_rate = 100, render_mode='3D') # from stable_baselines3.common.env_checker import check_env # check_env(env, warn=True) # you can check the environment using built-in tools # Reset the environment observation, info = env.reset(initial_state='random', options={'pos_bound': 2, 'vel_bound': 0}) # Print out policies for the user to select. print("Select one of the models:") models_available = os.listdir(models_dir) for i, name in enumerate(models_available): print(f"{i}: {name}") model_idx = int(input("Enter the model index: ")) # Load the model model_path = os.path.join(models_dir, models_available[model_idx]) print(f"Loading model from the path {model_path}") model = PPO.load(model_path, env=env, tensorboard_log=log_dir) num_episodes = 10 for i in range(num_episodes): obs, info = env.reset() terminated = False j = 0 while not terminated: env.render() action, _ = model.predict(obs) obs, reward, terminated, truncated, info = env.step(action) if i == 0: # Save frames from the first rollout to make a gif. env.fig.savefig(os.path.join(output_dir, 'PPO_hover_'+str(j)+'.png')) j += 1 plt.show()