""" Imports """ import numpy as np import cvxopt from scipy.linalg import block_diag def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None): """ From https://scaron.info/blog/quadratic-programming-in-python.html . Infrastructure code for solving quadratic programs using CVXOPT. The structure of the program is as follows: min 0.5 xT P x + qT x s.t. Gx <= h Ax = b Inputs: P, numpy array, the quadratic term of the cost function q, numpy array, the linear term of the cost function G, numpy array, inequality constraint matrix h, numpy array, inequality constraint vector A, numpy array, equality constraint matrix b, numpy array, equality constraint vector Outputs: The optimal solution to the quadratic program """ P = .5 * (P + P.T) # make sure P is symmetric args = [cvxopt.matrix(P), cvxopt.matrix(q)] if G is not None: args.extend([cvxopt.matrix(G), cvxopt.matrix(h)]) if A is not None: args.extend([cvxopt.matrix(A), cvxopt.matrix(b)]) sol = cvxopt.solvers.qp(*args) if 'optimal' not in sol['status']: return None return np.array(sol['x']).reshape((P.shape[1],)) def H_fun(dt, k=7): """ Computes the cost matrix for a single segment in a single dimension. *** Assumes that the decision variables c_i are e.g. x(t) = c_0 + c_1*t + c_2*t^2 + c_3*t^3 + c_4*t^4 + c_5*t^5 + .. + c_k*t^k Inputs: dt, scalar, the duration of the segment (t_(i+1) - t_i) k, scalar, the order of the polynomial. Outputs: H, numpy array, matrix containing the min snap cost function for that segment. Assumes the polynomial is at least order 5. """ H = np.zeros((k+1,k+1)) # TODO: implement automatic cost function based on the desired cost functional (snap or jerk) and the order of the polynomial, k. seventh_order_cost = np.array([[576*dt, 1440*dt**2, 2880*dt**3, 5040*dt**4], [1440*dt**2, 4800*dt**3, 10800*dt**4, 20160*dt**5], [2880*dt**3, 10800*dt**4, 25920*dt**5, 50400*dt**6], [5040*dt**4, 20160*dt**5, 50400*dt**6, 100800*dt**7]]) # Only take up to the (k+1) entries cost = seventh_order_cost[0:(k+1-4), 0:(k+1-4)] H[4:(k+1),4:(k+1)] = cost return H def get_1d_constraints(keyframes, delta_t, m, k=7, vmax=5, vstart=0, vend=0): """ Computes the constraint matrices for the min snap problem. *** Assumes that the decision variables c_i are e.g. o(t) = c_0 + c_1*t + c_2*t^2 + ... c_(k)*t^(k) We impose the following constraints FOR EACH SEGMENT m: 1) x_m(0) = keyframe[i] # position at t = 0 2) x_m(dt) = keyframe[i+1] # position at t = dt 3) v_m(0) = v_start # velocity at t = 0 4) v_m(dt) = v_end # velocity at t = dt 5) v_m(dt) = v_(m+1)(0) # velocity continuity for interior segments 6) a_m(dt) = a_(m+1)(0) # acceleration continuity for interior segments 7) j_m(dt) = j_(m+1)(0) # jerk continuity for interior segments 8) s_m(dt) = s_(m+1)(0) # snap continuity for interior segments 9) v_m(dt/2) <= vmax # velocity constraint at midpoint of each segment For the first and last segment we impose: 1) a_0(0) = 0 # acceleration at start of the trajectory is 0 2) j_0(0) = 0 # jerk at start of the trajectory is 0 3) a_N(dt) = 0 # acceleration at the end of the trajectory is 0 4) j_N(dt) = 0 # jerk at the end of the trajectory is 0 Inputs: keyframes, numpy array, a list of m waypoints IN ONE DIMENSION (x,y,z, or yaw) delta_t, numpy array, the times between keyframes computed apriori. m, int, the number of segments. k, int, the degree of the polynomial. vmax, float, max speeds imposed at the midpoint of each segment. vstart, float, the starting speed of the quadrotor. vend, float, the ending speed of the quadrotor. Outputs: A, numpy array, matrix of equality constraints (left side). b, numpy array, array of equality constraints (right side). G, numpy array, matrix of inequality constraints (left side). h, numpy array, array of inequality constraints (right side). """ # The constraint matrices to be filled out. A = [] b = [] G = [] h = [] for i in range(m): # for each segment... # Gets the segment duration dt = delta_t[i] # Position continuity at the beginning of the segment A.append([0]*(k+1)*i + [1] + [0]*(k) + [0]*(k+1)*(m-i-1)) b.append(keyframes[i]) # Position continuity at the end of the segment A.append([0]*(k+1)*i + [dt**j for j in range(k+1)] + [0]*(k+1)*(m-i-1)) b.append(keyframes[i+1]) # Intermediate smoothness constraints if i < (m-1): # we don't want to include the last segment for this loop A.append([0]*(k+1)*i + [0] + [-j*dt**(j-1) for j in range(1, k+1)] + [0] + [j*(0)**(j-1) for j in range(1, k+1)] + [0]*(k+1)*(m-i-2)) # Velocity b.append(0) A.append([0]*(k+1)*i + [0]*2 + [-(j-1)*j*dt**(j-2) for j in range(2, k+1)] + [0]*2 + [(j-1)*j*(0)**(j-2) for j in range(2, k+1)] + [0]*(k+1)*(m-i-2)) # Acceleration b.append(0) A.append([0]*(k+1)*i + [0]*3 + [-(j-2)*(j-1)*j*dt**(j-3) for j in range(3, k+1)] + [0]*3 + [(j-2)*(j-1)*j*(0)**(j-3) for j in range(3, k+1)] + [0]*(k+1)*(m-i-2)) # Jerk b.append(0) A.append([0]*(k+1)*i + [0]*4 + [-(j-3)*(j-2)*(j-1)*j*dt**(j-4) for j in range(4, k+1)] + [0]*4 + [(j-3)*(j-2)*(j-1)*j*(0)**(j-4) for j in range(4, k+1)] + [0]*(k+1)*(m-i-2)) # Snap b.append(0) # Inequality constraints G.append([0]*(k+1)*i + [0] + [j*(0.5*dt)**(j-1) for j in range(1, k+1)] + [0]*(k+1)*(m-i-1)) # Velocity constraint at midpoint h.append(vmax) A.append([0] + [j*(0)**(j-1) for j in range(1, k+1)] + [0]*(k+1)*(m-1)) # Velocity at start b.append(vstart) A.append([0]*(k+1)*(m-1) + [0] + [j*(dt)**(j-1) for j in range(1, k+1)]) # Velocity at end b.append(vend) A.append([0]*2 + [(j-1)*j*(0)**(j-2) for j in range(2, k+1)] + [0]*(k+1)*(m-1)) # Acceleration = 0 at start b.append(0) A.append([0]*(k+1)*(m-1) + [0]*2 + [(j-1)*j*(dt)**(j-2) for j in range(2, k+1)]) # Acceleration = 0 at end b.append(0) A.append([0]*3 + [(j-2)*(j-1)*j*(0)**(j-3) for j in range(3, k+1)] + [0]*(k+1)*(m-1)) # Jerk = 0 at start b.append(0) A.append([0]*(k+1)*(m-1) + [0]*3 + [(j-2)*(j-1)*j*(dt)**(j-3) for j in range(3, k+1)]) # Jerk = 0 at end b.append(0) # Convert to numpy arrays and ensure floats to work with cvxopt. A = np.array(A).astype(float) b = np.array(b).astype(float) G = np.array(G).astype(float) h = np.array(h).astype(float) return (A, b, G, h) class MinSnap(object): """ MinSnap generates a minimum snap trajectory for the quadrotor, following https://ieeexplore.ieee.org/document/5980409. The trajectory is a piecewise 7th order polynomial (minimum degree necessary for snap optimality). """ def __init__(self, points, yaw_angles=None, yaw_rate_max=2*np.pi, poly_degree=7, yaw_poly_degree=7, v_max=3, v_avg=1, v_start=[0, 0, 0], v_end=[0, 0, 0], verbose=True): """ Waypoints and yaw angles compose the "keyframes" for optimizing over. Inputs: points, numpy array of m 3D waypoints. yaw_angles, numpy array of m yaw angles corresponding to each waypoint. yaw_rate_max, the maximum yaw rate in rad/s v_avg, the average speed between waypoints, this is used to do the time allocation as well as impose constraints at midpoint of each segment. v_start, the starting velocity vector given as an array [x_dot_start, y_dot_start, z_dot_start] v_end, the ending velocity vector given as an array [x_dot_end, y_dot_end, z_dot_end] verbose, determines whether or not the QP solver will output information. """ if poly_degree != 7 or yaw_poly_degree != 7: raise NotImplementedError("Oops, we haven't implemented cost functions for polynomial degree != 7 yet.") if yaw_angles is None: self.yaw = np.zeros((points.shape[0])) else: self.yaw = yaw_angles self.v_avg = v_avg cvxopt.solvers.options['show_progress'] = verbose # Compute the distances between each waypoint. seg_dist = np.linalg.norm(np.diff(points, axis=0), axis=1) seg_mask = np.append(True, seg_dist > 1e-1) self.points = points[seg_mask,:] self.null = False m = self.points.shape[0]-1 # Get the number of segments # Compute the derivatives of the polynomials self.x_dot_poly = np.zeros((m, 3, poly_degree)) self.x_ddot_poly = np.zeros((m, 3, poly_degree-1)) self.x_dddot_poly = np.zeros((m, 3, poly_degree-2)) self.x_ddddot_poly = np.zeros((m, 3, poly_degree-3)) self.yaw_dot_poly = np.zeros((m, 1, yaw_poly_degree)) self.yaw_ddot_poly = np.zeros((m, 1, yaw_poly_degree-1)) # If two or more waypoints remain, solve min snap if self.points.shape[0] >= 2: ################## Time allocation self.delta_t = seg_dist/self.v_avg # Compute the segment durations based on the average velocity self.t_keyframes = np.concatenate(([0], np.cumsum(self.delta_t))) # Construct time array which indicates when the quad should be at the i'th waypoint. ################## Cost function # First get the cost segment for each matrix: H_pos = [H_fun(self.delta_t[i], k=poly_degree) for i in range(m)] H_yaw = [H_fun(self.delta_t[i], k=yaw_poly_degree) for i in range(m)] # Now concatenate these costs using block diagonal form: P_pos = block_diag(*H_pos) P_yaw = block_diag(*H_yaw) # Lastly the linear term in the cost function is 0 q_pos = np.zeros(((poly_degree+1)*m,1)) q_yaw = np.zeros(((yaw_poly_degree+1)*m, 1)) ################## Constraints for each axis (Ax,bx,Gx,hx) = get_1d_constraints(self.points[:,0], self.delta_t, m, k=poly_degree, vmax=v_max, vstart=v_start[0], vend=v_end[0]) (Ay,by,Gy,hy) = get_1d_constraints(self.points[:,1], self.delta_t, m, k=poly_degree, vmax=v_max, vstart=v_start[1], vend=v_end[1]) (Az,bz,Gz,hz) = get_1d_constraints(self.points[:,2], self.delta_t, m, k=poly_degree, vmax=v_max, vstart=v_start[2], vend=v_end[2]) (Ayaw,byaw,Gyaw,hyaw) = get_1d_constraints(self.yaw, self.delta_t, m, k=yaw_poly_degree, vmax=yaw_rate_max) ################## Solve for x, y, z, and yaw ### Only in the fully constrained situation is there a unique minimum s.t. we can solve the system Ax = b. # c_opt_x = np.linalg.solve(Ax,bx) # c_opt_y = np.linalg.solve(Ay,by) # c_opt_z = np.linalg.solve(Az,bz) # c_opt_yaw = np.linalg.solve(Ayaw,byaw) ### Otherwise, in the underconstrained case or when inequality constraints are given we solve the QP. c_opt_x = cvxopt_solve_qp(P_pos, q=q_pos, G=Gx, h=hx, A=Ax, b=bx) c_opt_y = cvxopt_solve_qp(P_pos, q=q_pos, G=Gy, h=hy, A=Ay, b=by) c_opt_z = cvxopt_solve_qp(P_pos, q=q_pos, G=Gz, h=hz, A=Az, b=bz) c_opt_yaw = cvxopt_solve_qp(P_yaw, q=q_yaw, G=Gyaw, h=hyaw, A=Ayaw, b=byaw) ################## Construct polynomials from c_opt self.x_poly = np.zeros((m, 3, (poly_degree+1))) self.yaw_poly = np.zeros((m, 1, (yaw_poly_degree+1))) for i in range(m): self.x_poly[i,0,:] = np.flip(c_opt_x[(poly_degree+1)*i:((poly_degree+1)*i+(poly_degree+1))]) self.x_poly[i,1,:] = np.flip(c_opt_y[(poly_degree+1)*i:((poly_degree+1)*i+(poly_degree+1))]) self.x_poly[i,2,:] = np.flip(c_opt_z[(poly_degree+1)*i:((poly_degree+1)*i+(poly_degree+1))]) self.yaw_poly[i,0,:] = np.flip(c_opt_yaw[(yaw_poly_degree+1)*i:((yaw_poly_degree+1)*i+(yaw_poly_degree+1))]) for i in range(m): for j in range(3): self.x_dot_poly[i,j,:] = np.polyder(self.x_poly[i,j,:], m=1) self.x_ddot_poly[i,j,:] = np.polyder(self.x_poly[i,j,:], m=2) self.x_dddot_poly[i,j,:] = np.polyder(self.x_poly[i,j,:], m=3) self.x_ddddot_poly[i,j,:] = np.polyder(self.x_poly[i,j,:], m=4) self.yaw_dot_poly[i,0,:] = np.polyder(self.yaw_poly[i,0,:], m=1) self.yaw_ddot_poly[i,0,:] = np.polyder(self.yaw_poly[i,0,:], m=2) else: # Otherwise, there is only one waypoint so we just set everything = 0. self.null = True m = 1 self.T = np.zeros((m,)) self.x_poly = np.zeros((m, 3, 6)) self.x_poly[0,:,-1] = points[0,:] def update(self, t): """ Given the present time, return the desired flat output and derivatives. Inputs t, time, s Outputs flat_output, a dict describing the present desired flat outputs with keys x, position, m x_dot, velocity, m/s x_ddot, acceleration, m/s**2 x_dddot, jerk, m/s**3 x_ddddot, snap, m/s**4 yaw, yaw angle, rad yaw_dot, yaw rate, rad/s """ x = np.zeros((3,)) x_dot = np.zeros((3,)) x_ddot = np.zeros((3,)) x_dddot = np.zeros((3,)) x_ddddot = np.zeros((3,)) yaw = 0 yaw_dot = 0 yaw_ddot = 0 if self.null: # If there's only one waypoint x = self.points[0,:] yaw = self.yaw[0] else: # Find interval index i and time within interval t. t = np.clip(t, self.t_keyframes[0], self.t_keyframes[-1]) for i in range(self.t_keyframes.size-1): if self.t_keyframes[i] + self.delta_t[i] >= t: break t = t - self.t_keyframes[i] # Evaluate polynomial. for j in range(3): x[j] = np.polyval( self.x_poly[i,j,:], t) x_dot[j] = np.polyval( self.x_dot_poly[i,j,:], t) x_ddot[j] = np.polyval( self.x_ddot_poly[i,j,:], t) x_dddot[j] = np.polyval( self.x_dddot_poly[i,j,:], t) x_ddddot[j] = np.polyval(self.x_ddddot_poly[i,j,:], t) yaw = np.polyval(self.yaw_poly[i, 0, :], t) yaw_dot = np.polyval(self.yaw_dot_poly[i,0,:], t) yaw_ddot = np.polyval(self.yaw_ddot_poly[i,0,:], t) flat_output = { 'x':x, 'x_dot':x_dot, 'x_ddot':x_ddot, 'x_dddot':x_dddot, 'x_ddddot':x_ddddot, 'yaw':yaw, 'yaw_dot':yaw_dot, 'yaw_ddot':yaw_ddot} return flat_output if __name__=="__main__": import matplotlib.pyplot as plt from matplotlib import cm waypoints = np.array([[0.00, 0.00, 0.00], [1.00, 0.00, 0.25], [1.00, 1.00, 0.50], [0.00, 1.00, 1.00], [0.00, 2.00, 1.25], [2.00, 2.00, 1.50] ]) yaw_angles = np.array([0, np.pi/2, 0, np.pi/4, 3*np.pi/2, 0]) v_avg = 2 # Average velocity, used for time allocation v_start = [0, 0, 0] # Start (x,y,z) velocity v_end = [0, 0, 0] # End (x,y,z) velocity. traj = MinSnap(waypoints, yaw_angles, v_max=5, v_avg=v_avg, v_start=v_start, v_end=v_end, verbose=True) t_keyframes = traj.t_keyframes N = 1000 time = np.linspace(0,1.1*t_keyframes[-1],N) x = np.zeros((N, 3)) xdot = np.zeros((N,3)) xddot = np.zeros((N,3)) xdddot = np.zeros((N,3)) xddddot = np.zeros((N,3)) yaw = np.zeros((N,)) yaw_dot = np.zeros((N,)) for i in range(N): flat = traj.update(time[i]) x[i,:] = flat['x'] xdot[i,:] = flat['x_dot'] xddot[i,:] = flat['x_ddot'] xdddot[i,:] = flat['x_dddot'] xddddot[i,:] = flat['x_ddddot'] yaw[i] = flat['yaw'] yaw_dot[i] = flat['yaw_dot'] t_keyframes = traj.t_keyframes (fig, axes) = plt.subplots(nrows=5, ncols=1, sharex=True, num="Translational Flat Outputs") ax = axes[0] ax.plot(time, x[:,0], 'r-', label="X") ax.plot(time, x[:,1], 'g-', label="Y") ax.plot(time, x[:,2], 'b-', label="Z") ax.plot(t_keyframes, waypoints, 'ko') ax.legend() ax.set_ylabel("x") ax = axes[1] ax.plot(time, xdot[:,0], 'r-', label="X") ax.plot(time, xdot[:,1], 'g-', label="Y") ax.plot(time, xdot[:,2], 'b-', label="Z") ax.set_ylabel("xdot") ax = axes[2] ax.plot(time, xddot[:,0], 'r-', label="X") ax.plot(time, xddot[:,1], 'g-', label="Y") ax.plot(time, xddot[:,2], 'b-', label="Z") ax.set_ylabel("xddot") ax = axes[3] ax.plot(time, xdddot[:,0], 'r-', label="X") ax.plot(time, xdddot[:,1], 'g-', label="Y") ax.plot(time, xdddot[:,2], 'b-', label="Z") ax.set_ylabel("xdddot") ax = axes[4] ax.plot(time, xddddot[:,0], 'r-', label="X") ax.plot(time, xddddot[:,1], 'g-', label="Y") ax.plot(time, xddddot[:,2], 'b-', label="Z") ax.set_ylabel("xddddot") ax.set_xlabel("Time, s") (fig, axes) = plt.subplots(nrows=2, ncols=1, sharex=True, num="Yaw vs Time") ax = axes[0] ax.plot(time, yaw, 'k', label="yaw") ax.plot(t_keyframes, yaw_angles, 'ro') ax.set_ylabel("yaw") ax = axes[1] ax.plot(time, yaw_dot, 'k', label="yaw") ax.set_ylabel("yaw dot") ax.set_xlabel("Time, s") speed = np.sqrt(xdot[:,0]**2 + xdot[:,1]**2) fig = plt.figure(num="XY Trajectory") ax = fig.add_subplot(projection='3d') s = ax.scatter(x[:,0], x[:,1], x[:,2], c=cm.winter(speed/speed.max()), s=4, label="Flat Output") ax.plot(waypoints[:,0], waypoints[:,1], waypoints[:,2], 'ko', markersize=10, label="Waypoints") ax.grid() ax.legend() plt.show()