Added thrust vector control abstraction.

This commit is contained in:
spencerfolk
2024-07-29 10:08:46 -04:00
parent fa21ebd717
commit e7da009fa1
2 changed files with 37 additions and 97 deletions

View File

@@ -3,6 +3,7 @@ from scipy.spatial.transform import Rotation
class SE3Control(object):
"""
Quadrotor trajectory tracking controller based on https://ieeexplore.ieee.org/document/5717652
"""
def __init__(self, quad_params):
@@ -67,97 +68,6 @@ class SE3Control(object):
(k * self.rotor_dir).reshape(1,-1)))
self.TM_to_f = np.linalg.inv(self.f_to_TM)
def update_ref(self, t, flat_output):
"""
This function receives the current time, and desired flat
outputs. It returns the reference command inputs.
Follows https://repository.upenn.edu/edissertations/547/
Inputs:
t, present time in seconds
flat_output, a dict describing the present desired flat outputs with keys
x, position, m
x_dot, velocity, m/s
x_ddot, acceleration, m/s**2 a
x_dddot, jerk, m/s**3 a_dot
x_ddddot, snap, m/s**4 a_ddot
yaw, yaw angle, rad
yaw_dot, yaw rate, rad/s
yaw_ddot, yaw acceleration, rad/s**2 #required! not the same if computing command using controller
Outputs:
control_input, a dict describing the present computed control inputs with keys
cmd_motor_speeds, rad/s
cmd_thrust, N (for debugging and laboratory; not used by simulator)
cmd_moment, N*m (for debugging; not used by simulator)
cmd_q, quaternion [i,j,k,w] (for laboratory; not used by simulator)
cmd_w, angular velocity
cmd_a, angular acceleration
"""
cmd_motor_speeds = np.zeros((4,))
cmd_q = np.zeros((4,))
def normalize(x):
"""Return normalized vector."""
return x / np.linalg.norm(x)
# Desired force vector.
t = flat_output['x_ddot']+ np.array([0, 0, self.g])
b3 = normalize(t)
F_des = self.mass * (t)# this is vectorized
# Control input 1: collective thrust.
u1 = np.dot(F_des, b3)
# Desired orientation to obtain force vector.
b3_des = normalize(F_des) #b3_des and b3 are the same
yaw_des = flat_output['yaw']
c1_des = np.array([np.cos(yaw_des), np.sin(yaw_des), 0])
b2_des = normalize(np.cross(b3_des, c1_des))
b1_des = np.cross(b2_des, b3_des)
R_des = np.stack([b1_des, b2_des, b3_des]).T
R = R_des # assume we have perfect tracking on rotation
# Following section follows Mellinger paper to compute reference angular velocity
dot_u1 = np.dot(b3,flat_output['x_dddot'])
hw = self.mass/u1*(flat_output['x_dddot']-dot_u1*b3)
p = np.dot(-hw, b2_des)
q = np.dot(hw, b1_des)
w_des = np.array([0, 0, flat_output['yaw_dot']])
r = np.dot(w_des, b3_des)
Omega = np.array([p, q, r])
wwu1b3 = np.cross(Omega, np.cross(Omega, u1*b3))
ddot_u1 = np.dot(b3, self.mass*flat_output['x_ddddot']) - np.dot(b3, wwu1b3)
ha = 1.0/u1*(self.mass*flat_output['x_ddddot'] - ddot_u1*b3 - 2*np.cross(Omega,dot_u1*b3) - wwu1b3)
p_dot = np.dot(-ha, b2_des)
q_dot = np.dot(ha, b1_des)
np.cross(Omega, Omega)
r_dot = flat_output['yaw_ddot'] *np.dot(np.array([0,0,1.0]), b3_des) #uniquely need yaw_ddot
Alpha = np.array([p_dot, q_dot, r_dot])
# Control input 2: moment on each body axis
u2 = self.inertia @ Alpha + np.cross(Omega, self.inertia @ Omega)
# Convert to cmd motor speeds.
TM = np.array([u1, u2[0], u2[1], u2[2]])
cmd_motor_forces = self.TM_to_f @ TM
cmd_motor_speeds = cmd_motor_forces / self.k_eta
cmd_motor_speeds = np.sign(cmd_motor_speeds) * np.sqrt(np.abs(cmd_motor_speeds))
cmd_q = Rotation.from_matrix(R_des).as_quat()
control_input = {'cmd_motor_speeds':cmd_motor_speeds,
'cmd_thrust':u1,
'cmd_moment':u2,
'cmd_q':cmd_q,
'cmd_w':Omega,
'cmd_a':Alpha}
return control_input
def update(self, t, state, flat_output):
"""
This function receives the current time, true state, and desired flat
@@ -188,6 +98,9 @@ class SE3Control(object):
cmd_q, quaternion [i,j,k,w]
cmd_w, angular rates in the body frame, rad/s
cmd_v, velocity in the world frame, m/s
cmd_acc, mass normalized thrust vector in the world frame, m/s/s.
Not all keys are used, it depends on the control_abstraction selected when initializing the Multirotor object.
"""
cmd_motor_speeds = np.zeros((4,))
cmd_thrust = 0
@@ -248,6 +161,7 @@ class SE3Control(object):
cmd_moment = u2 # Commanded moment, in units N-m.
cmd_q = Rotation.from_matrix(R_des).as_quat() # Commanded attitude as a quaternion.
cmd_v = -self.kp_vel*pos_err + flat_output['x_dot'] # Commanded velocity in world frame (if using cmd_vel control abstraction), in units m/s
cmd_acc = F_des/self.mass # Commanded acceleration in world frame (if using cmd_acc control abstraction)
control_input = {'cmd_motor_speeds':cmd_motor_speeds,
'cmd_motor_thrusts':cmd_rotor_thrusts,
@@ -255,5 +169,7 @@ class SE3Control(object):
'cmd_moment':cmd_moment,
'cmd_q':cmd_q,
'cmd_w':cmd_w,
'cmd_v':cmd_v}
'cmd_v':cmd_v,
'cmd_acc': cmd_acc}
return control_input

View File

@@ -47,7 +47,8 @@ class Multirotor(object):
'cmd_ctbr': the controller commands a collective thrsut and body rates.
'cmd_ctbm': the controller commands a collective thrust and moments on the x/y/z body axes
'cmd_ctatt': the controller commands a collective thrust and attitude (as a quaternion).
'cmd_vel': the controller commands a velocity vector in the body frame.
'cmd_vel': the controller commands a velocity vector in the world frame.
'cmd_acc': the controller commands a mass normalized thrust vector (acceleration) in the world frame.
aero: boolean, determines whether or not aerodynamic drag forces are computed.
"""
def __init__(self, quad_params, initial_state = {'x': np.array([0,0,0]),
@@ -128,8 +129,8 @@ class Multirotor(object):
self.k_w = 1 # The body rate P gain (for cmd_ctbr)
self.k_v = 10 # The *world* velocity P gain (for cmd_vel)
self.kp_att = 544 # The attitude P gain (for cmd_vel and cmd_ctatt)
self.kd_att = 46.64 # The attitude D gain (for cmd_vel and cmd_ctatt)
self.kp_att = 544 # The attitude P gain (for cmd_vel, cmd_acc, and cmd_ctatt)
self.kd_att = 46.64 # The attitude D gain (for cmd_vel, cmd_acc, and cmd_ctatt)
self.aero = aero
@@ -377,6 +378,29 @@ class Multirotor(object):
# Compute command moment based on attitude error.
cmd_moment = self.inertia @ (-self.kp_att*att_err - self.kd_att*state['w']) + np.cross(state['w'], self.inertia@state['w'])
elif self.control_abstraction == 'cmd_acc':
# The controller commands an acceleration vector (or thrust vector). This is equivalent to F_des in the SE3 controller.
F_des = control['cmd_acc']*self.mass
R = Rotation.from_quat(state['q']).as_matrix()
b3 = R @ np.array([0, 0, 1])
cmd_thrust = np.dot(F_des, b3)
# Desired orientation to obtain force vector.
b3_des = F_des/np.linalg.norm(F_des)
c1_des = np.array([1, 0, 0])
b2_des = np.cross(b3_des, c1_des)/np.linalg.norm(np.cross(b3_des, c1_des))
b1_des = np.cross(b2_des, b3_des)
R_des = np.stack([b1_des, b2_des, b3_des]).T
# Orientation error.
S_err = 0.5 * (R_des.T @ R - R.T @ R_des)
att_err = np.array([-S_err[1,2], S_err[0,2], -S_err[0,1]])
# Angular control; vector units of N*m.
cmd_moment = self.inertia @ (-self.kp_att*att_err - self.kd_att*state['w']) + np.cross(state['w'], self.inertia@state['w'])
print("Dumb")
else:
raise ValueError("Invalid control abstraction selected. Options are: cmd_motor_speeds, cmd_motor_thrusts, cmd_ctbm, cmd_ctbr, cmd_ctatt, cmd_vel")