Added more plotting and documentation

This commit is contained in:
spencerfolk
2023-12-21 10:41:41 -05:00
parent 36a9d36447
commit 9087cc5705

View File

@@ -14,7 +14,6 @@ from rotorpy.learning.quadrotor_environments import QuadrotorEnv
# Reward functions can be specified by the user, or we can import from existing reward functions.
from rotorpy.learning.quadrotor_reward_functions import hover_reward
# First, we need to make the gym environment. The inputs to the model are as follows...
"""
Inputs:
@@ -54,10 +53,14 @@ observation, info = env.reset(initial_state='random')
T = 300
time = np.arange(T)*(1/100) # Just for plotting purposes.
position = np.zeros((T, 3)) # Just for plotting purposes.
velocity = np.zeros((T, 3))
velocity = np.zeros((T, 3)) # Just for plotting purposes.
reward_sum = np.zeros((T,)) # Just for plotting purposes.
actions = np.zeros((T, 4)) # Just for plotting purposes.
for i in range(T):
##### Below is just code for computing the action via the SE3 controller and converting it to an action [-1,1]
# Unpack the observation from the environment
state = {'x': observation[0:3], 'v': observation[3:6], 'q': observation[6:10], 'w': observation[10:13], 'wind': observation[13:16], 'rotor_speeds': observation[16:20]}
@@ -77,18 +80,26 @@ for i in range(T):
# The environment expects the control inputs to all be within the range [-1,1]
action = np.interp(cmd_motor_speeds, [env.unwrapped.rotor_speed_min, env.unwrapped.rotor_speed_max], [-1,1])
###### Alternatively, we could just randomly sample the action space.
# action = np.random.uniform(low=-1, high=1, size=(4,))
# Step forward in the environment
observation, reward, terminated, truncated, info = env.step(action)
# For plotting, save the relevant information
position[i, :] = observation[0:3]
velocity[i, :] = observation[3:6]
if i == 0:
reward_sum[i] = reward
else:
reward_sum[i] = reward_sum[i-1] + reward
actions[i, :] = action
env.close()
# Plotting
(fig, axes) = plt.subplots(nrows=2, ncols=1, num='Position vs Time')
(fig, axes) = plt.subplots(nrows=2, ncols=1, num='Quadrotor State')
ax = axes[0]
ax.plot(time, position[:, 0], 'r', label='X')
ax.plot(time, position[:, 1], 'g', label='Y')
@@ -102,4 +113,18 @@ ax.plot(time, velocity[:, 1], 'g', label='Y')
ax.plot(time, velocity[:, 2], 'b', label='Z')
ax.set_xlabel("Time, s")
(fig, axes) = plt.subplots(nrows=2, ncols=1, num="Action and Reward")
ax = axes[0]
ax.plot(time, actions[:, 0], 'r', label='action 1')
ax.plot(time, actions[:, 1], 'g', label='action 2')
ax.plot(time, actions[:, 2], 'b', label='action 3')
ax.plot(time, actions[:, 3], 'm', label='action 4')
ax.set_ylabel("Action")
ax.legend()
ax = axes[1]
ax.plot(time, reward_sum, 'k')
ax.set_xlabel("Time, s")
ax.set_ylabel("Reward Sum")
plt.show()