Init
This commit is contained in:
202
rotorpy/sensors/external_mocap.py
Normal file
202
rotorpy/sensors/external_mocap.py
Normal file
@@ -0,0 +1,202 @@
|
||||
import numpy as np
|
||||
from scipy.spatial.transform import Rotation
|
||||
import copy
|
||||
|
||||
def hat_map(s):
|
||||
"""
|
||||
Given vector s in R^3, return associate skew symmetric matrix S in R^3x3
|
||||
"""
|
||||
return np.array([[ 0, -s[2], s[1]],
|
||||
[ s[2], 0, -s[0]],
|
||||
[-s[1], s[0], 0]])
|
||||
|
||||
class MotionCapture():
|
||||
"""
|
||||
The external motion capture is able to provide pose and twist measurements of the vehicle.
|
||||
Given the current ground truth state of the vehicle, it will output noisy measurements of the
|
||||
pose and twist. Artifacts can be introduced
|
||||
"""
|
||||
def __init__(self, sampling_rate,
|
||||
mocap_params={'pos_noise_density': 0.0005*np.ones((3,)), # noise density for position
|
||||
'vel_noise_density': 0.005*np.ones((3,)), # noise density for velocity
|
||||
'att_noise_density': 0.0005*np.ones((3,)), # noise density for attitude
|
||||
'rate_noise_density': 0.0005*np.ones((3,)), # noise density for body rates
|
||||
'vel_artifact_max': 5, # maximum magnitude of the artifact in velocity (m/s)
|
||||
'vel_artifact_prob': 0.001, # probability that an artifact will occur for a given velocity measurement
|
||||
'rate_artifact_max': 1, # maximum magnitude of the artifact in body rates (rad/s)
|
||||
'rate_artifact_prob': 0.0002 # probability that an artifact will occur for a given rate measurement
|
||||
},
|
||||
with_artifacts=False):
|
||||
"""
|
||||
Parameters:
|
||||
sampling_rate, Hz, the rate at which this sensor is being sampled. Used for computing the noise.
|
||||
mocap_params, a dict with keys
|
||||
pos_noise_density, position noise density, [m/sqrt(Hz)]
|
||||
vel_noise_density, velocity noise density, [m/s / sqrt(Hz)]
|
||||
att_noise_density, attitude noise density, [rad / sqrt(Hz)]
|
||||
rate_noise_density, attitude rate noise density, [rad/s /sqrt(Hz)]
|
||||
vel_artifact_prob, probability that a spike will occur for a given velocity measurement
|
||||
vel_artifact_max, the maximum magnitude of the artifact spike. [m/s]
|
||||
rate_artifact_prob, probability that a spike will occur for a given body rate measurement
|
||||
rate_artifact_max, the maximum magnitude of hte artifact spike. [rad/s]
|
||||
"""
|
||||
|
||||
self.rate_scale = np.sqrt(sampling_rate/2)
|
||||
|
||||
# Noise densities
|
||||
self.pos_density = mocap_params['pos_noise_density']
|
||||
self.vel_density = mocap_params['vel_noise_density']
|
||||
self.att_density = mocap_params['att_noise_density']
|
||||
self.rate_density = mocap_params['rate_noise_density']
|
||||
|
||||
# Artifacts
|
||||
self.vel_artifact_prob = mocap_params['vel_artifact_prob']
|
||||
self.vel_artifact_max = mocap_params['vel_artifact_max']
|
||||
self.rate_artifact_prob = mocap_params['rate_artifact_prob']
|
||||
self.rate_artifact_max = mocap_params['rate_artifact_max']
|
||||
|
||||
self.initialized = True
|
||||
self.with_artifacts = with_artifacts
|
||||
|
||||
def measurement(self, state, with_noise=False, with_artifacts=False):
|
||||
"""
|
||||
Computes and returns the sensor measurement at a time step.
|
||||
Inputs:
|
||||
state, a dict describing the state with keys
|
||||
x, position, m, shape=(3,)
|
||||
v, linear velocity, m/s, shape=(3,)
|
||||
q, quaternion [i,j,k,w], shape=(4,)
|
||||
w, angular velocity (in LOCAL frame!), rad/s, shape=(3,)
|
||||
with_noise, a boolean to indicate if noise is added
|
||||
with_artifacts, a boolean to indicate if artifacts are added.
|
||||
Artifacts are added to the velocity and angular rates, and are due
|
||||
to the numerical differentiation scheme used by motion capture systems.
|
||||
They will appear as random spikes in the data.
|
||||
Outputs:
|
||||
observation, a dictionary with keys
|
||||
x_m, noisy position measurement, m, shape=(3,)
|
||||
v_m, noisy linear velocity, m/s, shape=(3,)
|
||||
q_m, noisy quaternion [i,j,k,w], shape=(4,)
|
||||
w_m, noisy angular velocity (in LOCAL frame!), rad/s, shape=(3,)
|
||||
"""
|
||||
x_measured = copy.deepcopy(state['x']).astype(float)
|
||||
v_measured = copy.deepcopy(state['v']).astype(float)
|
||||
q_measured = Rotation.from_quat(copy.deepcopy(state['q']))
|
||||
w_measured = copy.deepcopy(state['w']).astype(float)
|
||||
|
||||
if with_noise:
|
||||
# Add noise to the measurements based on the provided measurement noise.
|
||||
x_measured += self.rate_scale * np.random.normal(scale=np.abs(self.pos_density))
|
||||
v_measured += self.rate_scale * np.random.normal(scale=np.abs(self.vel_density))
|
||||
w_measured += self.rate_scale * np.random.normal(scale=np.abs(self.rate_density))
|
||||
|
||||
# Noise has to be treated differently with quaternions...
|
||||
# Following https://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf pg 43
|
||||
# First, let's produce a perturbation vector in R3
|
||||
delta_phi = self.rate_scale*np.random.normal(scale=np.abs(self.att_density))
|
||||
|
||||
# Now convert that to a rotation matrix
|
||||
delta_rotation = Rotation.from_matrix(np.eye(3) + hat_map(delta_phi))
|
||||
|
||||
# Now apply that rotation to the quaternion
|
||||
q_measured = (q_measured * delta_rotation).as_quat()
|
||||
else:
|
||||
q_measured = q_measured.as_quat()
|
||||
|
||||
if with_artifacts:
|
||||
# If including artifacts, first roll the dice on whether or not a spike should occur for each measurement:
|
||||
vel_spike_bool = np.random.choice([0,1], p=[1-self.vel_artifact_prob, self.vel_artifact_prob])
|
||||
rate_spike_bool = np.random.choice([0,1], p=[1-self.rate_artifact_prob, self.rate_artifact_prob])
|
||||
|
||||
# Choose the axis that the spike will occur on
|
||||
vel_axis = np.random.choice([0,1,2])
|
||||
rate_axis = np.random.choice([0,1,2])
|
||||
|
||||
# Choose the sign of the spike
|
||||
vel_sign = np.random.choice([-1,1])
|
||||
rate_sign = np.random.choice([-1,1])
|
||||
|
||||
if vel_spike_bool:
|
||||
v_measured[vel_axis] += vel_sign*np.random.uniform(low=0, high=self.vel_artifact_max)
|
||||
if rate_spike_bool:
|
||||
w_measured[rate_axis] += rate_sign*np.random.uniform(low=0, high=self.rate_artifact_max)
|
||||
|
||||
return {'x': x_measured, 'q': q_measured, 'v': v_measured, 'w': w_measured}
|
||||
|
||||
if __name__=="__main__":
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def merge_dicts(dicts_in):
|
||||
"""
|
||||
Concatenates contents of a list of N state dicts into a single dict by
|
||||
prepending a new dimension of size N. This is more convenient for plotting
|
||||
and analysis. Requires dicts to have consistent keys and have values that
|
||||
are numpy arrays.
|
||||
"""
|
||||
dict_out = {}
|
||||
for k in dicts_in[0].keys():
|
||||
dict_out[k] = []
|
||||
for d in dicts_in:
|
||||
dict_out[k].append(d[k])
|
||||
dict_out[k] = np.array(dict_out[k])
|
||||
return dict_out
|
||||
|
||||
sim_rate = 1/500
|
||||
mocap_params = {'pos_noise_density': 0.0005*np.ones((3,)), # noise density for position
|
||||
'vel_noise_density': 0.005*np.ones((3,)), # noise density for velocity
|
||||
'att_noise_density': 0.0005*np.ones((3,)), # noise density for attitude
|
||||
'rate_noise_density': 0.0005*np.ones((3,)), # noise density for body rates
|
||||
'vel_artifact_max': 5, # maximum magnitude of the artifact in velocity (m/s)
|
||||
'vel_artifact_prob': 0.001, # probability that an artifact will occur for a given velocity measurement
|
||||
'rate_artifact_max': 1, # maximum magnitude of the artifact in body rates (rad/s)
|
||||
'rate_artifact_prob': 0.0002 # probability that an artifact will occur for a given rate measurement
|
||||
}
|
||||
sensor = MotionCapture(sampling_rate=sim_rate, mocap_params=mocap_params, with_artifacts=True)
|
||||
|
||||
measurements = []
|
||||
|
||||
state = {'x': np.zeros((3,)), 'v': np.zeros((3,)), 'q': np.array([0,0,0,1]), 'w': np.zeros((3,))}
|
||||
for i in range(1000):
|
||||
state = {'x': np.array([np.sin(2*np.pi*i/1000), np.sin(2*np.pi*i/1000 - np.pi/2), np.sin(2*np.pi*i/1000 - np.pi/5)]),
|
||||
'v': np.array([np.sin(2*np.pi*i/1000), np.sin(2*np.pi*i/1000 - np.pi/2), np.sin(2*np.pi*i/1000 - np.pi/5)]),
|
||||
'q': np.array([0,0,0,1]),
|
||||
'w': np.array([np.sin(2*np.pi*i/1000), np.sin(2*np.pi*i/1000 - np.pi/2), np.sin(2*np.pi*i/1000 - np.pi/5)])}
|
||||
current = sensor.measurement(state, with_noise=True, with_artifacts=True)
|
||||
measurements.append(current)
|
||||
|
||||
measurements = merge_dicts(measurements)
|
||||
|
||||
x_m = measurements['x']
|
||||
v_m = measurements['v']
|
||||
q_m = measurements['q']
|
||||
w_m = measurements['w']
|
||||
|
||||
q_norm = np.linalg.norm(q_m, axis=1)
|
||||
|
||||
(fig, axes) = plt.subplots(nrows=4, ncols=1, sharex=True, num="Measurements")
|
||||
fig.set_figwidth(9)
|
||||
fig.set_figheight(9)
|
||||
axe = axes[0]
|
||||
axe.plot(x_m[:,0], 'r', markersize=2)
|
||||
axe.plot(x_m[:,1], 'g', markersize=2)
|
||||
axe.plot(x_m[:,2], 'b', markersize=2)
|
||||
axe.set_ylim(bottom=-1.5, top=1.5)
|
||||
axe = axes[1]
|
||||
axe.plot(v_m[:,0], 'r', markersize=2)
|
||||
axe.plot(v_m[:,1], 'g', markersize=2)
|
||||
axe.plot(v_m[:,2], 'b', markersize=2)
|
||||
axe.set_ylim(bottom=-1.5, top=1.5)
|
||||
axe = axes[2]
|
||||
axe.plot(q_m[:,0], 'r', markersize=2)
|
||||
axe.plot(q_m[:,1], 'g', markersize=2)
|
||||
axe.plot(q_m[:,2], 'b', markersize=2)
|
||||
axe.plot(q_m[:,3], 'm', markersize=2)
|
||||
axe.plot(q_norm, 'k', markersize=2)
|
||||
axe = axes[3]
|
||||
axe.plot(w_m[:,0], 'r', markersize=2)
|
||||
axe.plot(w_m[:,1], 'g', markersize=2)
|
||||
axe.plot(w_m[:,2], 'b', markersize=2)
|
||||
axe.set_ylim(bottom=-1.5, top=1.5)
|
||||
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user